ON HAUSDORFF DIMENSION OF SOME CANTOR ATTRACTORS

BY

G. LEVIN

Department of Mathematics, The Hebrew University of Jerusalem Givat Ram, Jerusalem 91904, Israel e-mail: levin@math.huji.ac.il

AND

F. Przytycki

Institute of Mathematics of PAN
Warsaw 00-950, Poland
e-mail: F.Przytycki@impan.gov.pl

ABSTRACT

We study what happens with the dimension of Feigenbaum-like attractors of smooth unimodal maps as the order of the critical point grows.

1. Introduction

Let f be a smooth unimodal map of an interval. We assume that f is infinitely-renormalizable with stationary combinatorics. Then f has an attractor C(f) both in metric and topological senses, which is a Cantor set and which is the ω -limit set of the critical point of f. In this note we consider the following question motivated by [1], [15], and [8]: what happens with the Hausdorff dimension of C(f) as the order ℓ of the critical point grows to infinity? We show that it must grow to at least 2/3. In the orientation reversing case (which includes the classical Feigenbaum's one) we also prove that the Hausdorff dimension has a limit as ℓ tends to infinity, this limit is less than 1, and it is equal to the Hausdorff dimension of an attractor of some limit unimodal dynamics defined in [8].

Denote by HD(E) the Hausdorff dimension of a set E in \mathbb{R}^n .

It is well-known [9] (and follows from convergence of renormalizations) that the Hausdorff dimension HD(C(f)) of the attractor C(f) of f depends actually only on the stationary combinatorics \aleph of the map f and the criticality order ℓ of its critical point provided that ℓ is an even integer. It allows us to write $D(\aleph, \ell) = HD(C(f))$ for all smooth f with fixed \aleph and ℓ .

(Note here that once the convergence of renormalizations is established for all real big enough criticalities ℓ , all results and proofs of the paper hold true for such ℓ .)

We have a priori:

$$(1) 0 < HD(\aleph, \ell) < 1.$$

COMMENT 1: (1) If $\ell = 2$, then the upper bound in (1) can be strengthened [5]: there is a number $\sigma < 1$ such that $HD(\aleph, 2) \leq \sigma$ for all combinatorics \aleph .

- (2) Feigenbaum's case $|\aleph| = 2$ with the quadratic critical point $(\ell = 2)$ has been studied intensively; see [16], [17], particularly in the framework of Feigenbaum's universality [3], [4]. Numerically, $D(\aleph, 2) = 0.538...$; see [6].
- (3) Although $HD(\aleph,\ell)$ is always positive, it is not difficult to construct a sequence of stationary combinatorics \aleph_n such that, for every ℓ , $HD(\aleph_n,\ell) \to 0$ as $n \to \infty$. For instance, \aleph_n can be defined by the following first n-1 itineraries of the critical value: n-2 times "plus" and one time "minus". Then bounds (real or complex) imply that if $f_n(z) = z^{\ell} + c_n$ is infinitely-renormalizable with the stationary combinatorics \aleph_n , then $HD(C(f_n)) \to 0$ as $n \to \infty$.

Note that the number $D(\aleph, 2)$ ($|\aleph| = 2$) as well as the numbers $HD(\aleph_n, \ell)$ (with fixed ℓ and big n) are less than 2/3.

Theorem 1: For every \aleph ,

(2)
$$\liminf D(\aleph, \ell) > \frac{2}{3}$$

as ℓ tends to infinity along the even integers.

To state our result about the upper bound, we need to introduce some notions. Non-symmetry. For a unimodal map f with a single critical point at c, denote by I_f the involution map defined in a neighborhood of c by $I_f : x \mapsto \hat{x}$, where $I_f(c) = c$, and otherwise $I_f(x)$ is the unique $\hat{x} \neq x$, such that $f(x) = f(\hat{x})$. If f is of the form $|E(x)|^{\ell}$, where $\ell > 1$ and E is a C^2 -diffeomorphism, then I_f is also C^2 , and $I'_f(c) = -1$. The non-symmetry N(f) of f is said to be the number $N(f) = |I''_f(c)/2|$. It is easy to check that N(f) = |E''(c)/E'(c)|. Orientation reversing combinatorics of an infinitely-renormalizable unimodal map f is such stationary combinatorics \aleph that the rescaling factor of the renormalization is negative. In other words, the maps f and $f^{|\aleph|}$ have at the critical point of f different type of extrema (maximum and minimum). Examples: $|\aleph| = 2, 3$; more generally, \aleph_n $(n \ge 1)$ defined in Comment 1(3).

For a combinatorial type \aleph and an even integer ℓ , denote by $H_{\aleph,\ell}$ the unique universal unimodal map normalized so that $H_{\aleph,\ell}$: $[0,1] \to [0,1]$ and $H_{\aleph,\ell}(0) = 1$ (see next Section for complete definition). It is shown in [8] that the sequence $\{H_{\aleph,\ell}\}_{\ell}$ converges uniformly to a unimodal map H_{\aleph} : $[0,1] \to [0,1]$.

We prove in Lemma 4.3 that if the combinatorial type \aleph reverses orientation, then the sequence of non-symmetries $N(H_{\aleph,\ell})$, $\ell=2,4,\ldots$, is uniformly bounded.

THEOREM 2: For a given combinatorial type \aleph , assume that the sequence of non-symmetries $N(H_{\aleph,\ell})$, $\ell=2,4,\ldots$, is uniformly bounded. Then the Hausdorff dimension of the attractor is continuous at $\ell=\infty$: there exists

(3)
$$\lim_{\ell \to \infty} D(\aleph, \ell) = HD(C(H_{\aleph})) < 1.$$

Consequently, (3) holds when \aleph reverses orientation.

COMMENT 2: It is not clear if the non-symmetry $N(H_{\aleph,\ell})$ is uniformly bounded in ℓ for any type \aleph .

The proof of Theorems 1 and 2 is based on recent results of [8]: see the next Section where we reduce the statements to Theorem 4.

(Note, however, that in the proof of the lower 2/3-bound we use only a part of the main result of [8], namely, the compactness (Theorem 4 in [8]).)

In turn, to prove Theorem 4 we use some results of [10], [13]; see Section 3. From now on, we fix the type \aleph . Denote $p = |\aleph|$.

ACKNOWLEDGEMENT: The first author thanks Benjamin Weiss for a helpful discussion. The second author acknowledges Polish KBN grant 2PO3A 034 25.

2. Reduction to fixed-point maps

2.1 Universal Maps. For every real number $\ell > 1$, we consider a unimodal map $g_{\ell}: [-1,1] \to [-1,1]$ with the critical point at 0 of order ℓ . More precisely, g_{ℓ} is assumed to be in the following form: $g_{\ell}(x) = E_{\ell}(|x|^{\ell})$, where $E_{\ell}: [0,1] \to \mathbb{R}$ is a C^2 -diffeomorphism onto its image. The map $g = g_{\ell}$ is normalized so that

 $g_{\ell}(0) = 1$. It is further assumed to be infinitely renormalizable with the fixed combinatorial order type \aleph and to satisfy the fixed point equation:

(4)
$$\alpha g^{|\aleph|}(x) = g(\alpha x)$$

with $|\alpha| > 1$. By renormalization theory (see [14]), a fixed point g_{ℓ} for any $\ell > 1$ can be represented as $E_{\ell}(|x^{\ell}|)$ with E_{ℓ} a diffeomorphism in Epstein class (i.e., a diffeomorphism E of a real interval T' onto another real interval T such that the inverse map $E^{-1}: T \to T'$ extends to a univalent map $E^{-1}: (\mathbb{C} \setminus \mathbb{R}) \cup T \to (\mathbb{C} \setminus \mathbb{R}) \cup T'$).

It will be useful to deal with another unimodal map H_{ℓ} , which is related to g_{ℓ} as follows: $H_{\ell}(x) = |g_{\ell}(x^{1/\ell})|^{\ell} = |E_{\ell}(x)|^{\ell}$, $0 \le x \le 1$. Then H_{ℓ} is a unimodal map of [0,1] into itself, with a strict minimum attained at some $x_{\ell} \in (0,1)$. It also satisfies the equation

(5)
$$\tau H^{|\aleph|}(x) = H(\tau x)$$

with $\tau = |\alpha|^{\ell}$.

We denote by $C(g_{\ell})$ and $C(H_{\ell})$ the attracting Cantor sets of the maps $g_{\ell}: [-1,1] \to [-1,1]$ and $H_{\ell}: [0,1] \to [0,1]$, respectively. Clearly, $HD(C(g_{\ell})) = HD(C(H_{\ell}))$. Indeed, E conjugates $H = H_{\ell}$ to g restricted to [g(1),1], therefore it maps C(H) to C(g) and is a diffomorphism between neighborhoods of these sets.

Assume now that the order ℓ is an even integer. Then equation (4) with the normalization as above does have a unique solution, for every fixed ℓ and \aleph (see [14], [11]). Consequently, $H_{\ell} = |g_{\ell}(x^{1/\ell})|^{\ell}$ is the unique solution of (5) with the normalization as above.

In what follows, ℓ is an even integer, and H_{ℓ} denotes this unique solution of (5), with its own scaling constant $\tau_{\ell} > 1$. (Remember that the type \aleph is fixed.)

2.2 LIMIT DYNAMICS. The following result is proved in [8] (even for real ℓ); see Theorems 1 and 2 and Proposition 3 there.

THEOREM 3: The sequence of maps H_{ℓ} converges as $\ell \to \infty$, uniformly on [0, 1], to a unimodal function $H = H_{\infty}$, which satisfies the following properties:

- 1. $\lim_{\ell\to\infty} \tau_\ell = \tau > 1$ exists, and H, τ satisfy the fixed point equation $\tau H^p(x) = H(\tau x)$ for every $0 \le x \le \tau^{-1}$. Here (as always) $p = |\aleph|$.
- 2. H has analytic continuation to the union of two topological disks U_{-} and U_{+} and this analytic continuation will also be denoted by H.

- 3. For some R>1, H restricted to either U_+ or U_- is a covering (unbranched) of the punctured disk $V:=D(0,R)\setminus\{0\}$ and $\overline{U_+\cup U_-}\subset D(0,R)$.
- 4. U_{\pm} are both symmetric with respect to the real axis and their closures intersect exactly at x_0 ; $[0, x_0) \subset U_{-}$, $(x_0, 1] \subset U_{+}$.
- 5. Each H_{ℓ} extends to a complex-analytic map defined in $U_{-} \cup U_{+}$; this sequence of analytic extensions converges to H, as $\ell_{m} \to \infty$, uniformly on every compact subset of $U_{-} \cup U_{+}$.
- 6. For any two open intervals I, J of the real axis, if $0 \notin J$ and $H: I \to J$ is one-to-one, then the branch $H^{-1}: J \to I$ extends to a univalent map to the slit complex plane $(\mathbf{C} \setminus \mathbf{R}) \cup J$ (this follows from the same property for H_{ℓ} with ℓ finite)
- 7. The mapping $G_{\infty}(x) := H^{p-1}(\tau^{-1}x)$ fixes x_0 and G_{∞}^2 has the following power series expansion at x_0 :

$$G_{\infty}^{2}(x) = x - a(x - x_{0})^{3} + O(|x - x_{0}|^{4})$$

with a > 0.

- 8. For each ℓ , the mapping $G_{\ell} := H_{\ell}^{p-1}(\tau_{\ell}^{-1}x)$ fixes the critical point x_{ℓ} of H_{ℓ} , $G'_{\ell}(x_{\ell}) = \pm 1/\tau_{\ell}^{1/\ell}$, and G_{ℓ} converge to G_{∞} uniformly in a (complex) neighborhood of x_0 .
- 9. The unimodal map $H: [0,1] \to [0,1]$ has a unique attractor C(H), which (as for finite ℓ) is the closure of iterates of the critical point.
- 2.3 The Reduction. Since we know already that HD(C(f)) depends merely on \aleph and ℓ , Theorems 1 and 2 are covered by the following statement:

THEOREM 4: The following holds.

(a)

(6)
$$\liminf_{\ell \to \infty} HD(C(H_{\ell})) \ge HD(C(H_{\infty}));$$

(b)

(7)
$$\frac{2}{3} < HD(C(H_{\infty})) < 1;$$

(c) if the non-symmetries $N(H_{\ell})$ are uniformly bounded as $\ell \to \infty$, then the Hausdorff dimension is continuous at infinity:

(8)
$$\lim_{\ell \to \infty} HD(C(H_{\ell})) = HD(C(H_{\infty})).$$

The rest of the paper is devoted to the proof of this statement.

3. Background in dynamics

We prove Theorem 4 by reducing it finally to known statements about infinite conformal iterated function systems (c.i.f.s.) [10] and asymptotics near parabolic maps [13], which are given here.

- 3.1 C.I.F.S.. We follow [10] restricting ourself to dimension one. Let X be a closed real interval, and σ be a positive continuous function on X, which defines a new metric $d\rho = \sigma dx$ on X. Let I be a countable index set, |I| > 1, and let $S = \{\phi_i \colon X \to X, i \in I\}$ be a collection of injective uniform contractions w.r.t. the metric ρ : there is $\lambda < 1$, such that $\rho(\phi_i(x), \phi_i(y)) \le \lambda \rho(x, y)$ for all i and all x, y. For every finite word $w = w_1 \cdots w_n$, denote $\phi_w = \phi_{w_1} \circ \cdots \circ \phi_{w_n}$. (Note that the metric ρ can be replaced by the Euclidean one by replacing ϕ_i by ϕ_w , where w runs over all finite words of some fixed length n s.t. $\lambda^n ||\sigma|| < 1$.) For any infinite word of symbols $w = w_1 w_2 \cdots w_j \cdots$, $w_j \in I$, denote $w | n = w_1 w_2 \cdots w_n$. The limit set L of S is $L = \bigcup_{w \in I^{\infty}} \bigcap_{n=1}^{\infty} \phi_{w|n}(X)$. The system S is said to be conformal if:
 - (a) $\phi_i(\operatorname{Int}(X)) \subset \operatorname{Int}(X)$ and $\phi_i(\operatorname{Int}(X)) \cap \phi_j(\operatorname{Int}(X)) = \emptyset$ for all indexes $i \neq j$.
- (b) There is an open set $Y \supset X$ such that all maps ϕ_i extend to $C^{1+\epsilon}$ diffeomorphisms of V into V.
- (c) There is $K \geq 1$ such that $|D\phi_w(y)| \leq K|D\phi_w(x)|$ for every finite word w and all $x, y \in Y$, where $D\phi_w(x)$ means the derivative w.r.t. the metric ρ

The main object of our interest is the Hausdorff dimension of the limit set L. Note that it is the same w.r.t. the metric ρ as w.r.t. the standard Euclidean metric.

For every integer $n \geq 1$ and every $t \geq 0$ define $p_n(t) = \sum_w ||D\phi_w||^t$, where w runs over all words of length n, and ||.|| means the sup-norm. Consequently, $P(t) = \lim_{n \to \infty} \frac{1}{n} \log p_n(t)$ is called the pressure of S at t. The parameter $\theta = \theta_S$ of the system is defined as $\inf\{t : p_1(t) < \infty\}$.

THEOREM 5: 1 (see [10], Prop. 3.3). P(t) is non-increasing on $[0, \infty)$, strictly decreasing, continuous and convex on $[\theta, \infty)$.

- 2 (see [10], Thm. 3.15). $HD(L) = \sup\{HD(L_F): F \subset I \text{ is finite}\} = \inf\{t: P(t) \leq 0\}; \text{ if } P(t) = 0 \text{ then } t = HD(L).$
 - 3. If the series $p_1(\theta)$ diverges, then P(HD(L)) = 0 and $\theta < HD(L)$.

(Note that clause 3 follows directly from clauses 1 and 2.)

The system with P(t)=0 is called **regular**. The system is regular if and only if there is a *t*-conformal measure, i.e., a probability measure m such that m(L)=1 and, for every Borel set $A\subset X$ and every $i\in I$, $m(\phi_i(A))=1$

 $\int_A |D\phi_i|^t dm \text{ and } m(\phi_i(X) \cap \phi_j(X)) = 0 \text{ for all } i \neq j \text{ from } I.$

3.2 DOMINANT CONVERGENCE AND FORWARD POINCARÉ SERIES. Here we follow [13], adapting the statements slightly for our applications.

Let $f_n: U \to \mathbf{C}$ be a sequence of holomorphic maps which converges uniformly in a topological disk U of the plane to a holomorphic map $f: U \to \mathbf{C}$. Assume that $c_n \to c \in U$, and the following expansions hold:

$$f_n(z) = c_n + \lambda_n(z - c_n) + b_n(z - c_n)^2 - a_n(z - c_n)^3 + \cdots,$$

where $0 < \lambda_n < 1, b_n, a_n \in \mathbf{R}$, and

$$f(z) = z - a(z - c)^3 + \cdots,$$

where a > 0, i.e., f is parabolic with two ("real") attracting petals at c. (In particular, $b_n \to 0$ and $a_n \to a$.) Then f_n is said to converge to f dominantly, if there is M > 0 such that $|b_n| \le M|\lambda_n - 1|$ for all n.

For every $g = f_n$ and t > 0 define the (forward) Poincaré series

$$P_t(g, x) = \sum_{i>0} |(g^i)'(x)|^t$$

and, for any open set $V \subset U$, define

$$P_t(g, V, x) = \sum_{g^i(x) \in V} |(g^i)'(x)|^t.$$

We say the Poincaré series for (f_n, t_n) converge uniformly if, for any compact set K ($c \notin K$) in an attracting petal of f, and any $\epsilon > 0$, there exists a neighborhood V of c such that $P_{t_n}(f_n, V, x) < \epsilon$ for all n large enough and all $x \in K$. We will need

THEOREM 6: Let f_n , f be as above, and $t_n \to t > 2/3$. If $f_n \to f$ dominantly, then the Poincaré series for (f_n, t_n) converge uniformly.

This is a particular case of Theorem 10.2 proven in [13]. For completeness, we give a short proof of Theorem 6; see Appendix.

4. Proof of Theorem 4

4.1 PRESENTATION SYSTEM FOR THE CANTOR ATTRACTOR. We repeat (with modifications) a construction from [8] (cf. [7], [2]), which is crucial for our proof. Let H be either one of H_{ℓ} or the limit map H_{∞} . Consequently, let G be either

the corresponding G_{ℓ} or G_{∞} . We construct the presentation system for the attractor C(H), which is an infinite iterated function system Π on an interval I so that $C(H) \cap I$ is (up to a countable set) the limit set of Π . Moreover, this picture converges, as $\ell \to \infty$, to the corresponding picture of the limit map.

Denote $c_j = H^{j-1}(0)$, $j \geq 0$, the j-iterate of the critical point c_0 of H (i.e., $c_0 = x_\ell$ for $H = H_\ell$ and $c_0 = x_0$ for $H = H_\infty$). Let $I = [c_p, c_{2p}]$. Then we define a sequence of maps $\psi_{k,m} \colon I \to I$, $k = 1, 2, \ldots, m = 1, 2, \ldots, p-1$, as follows. Let $H^{-(p-m)} \colon [c_p, c_{2p}] \to [c_m, c_{p+m}]$ denote the corresponding one-to-one branch of $H^{-(p-m)}$. Then set

(9)
$$\psi_{k,m} = G^k \circ H^{-(p-m)}.$$

LEMMA 4.1: (a)

$$I_{k,m} := \psi_{k,m}(I) = [c_{p^k m}, c_{p^k(p+m)}] \subset I.$$

The intervals $I_{k,m}$ are pairwise disjoint.

(b) Let L be the limit set of the system $\{\psi_{k,m}\}$ (in other words, L is the set of non-escaping points of the inverse maps $\psi_{k,m}^{-1}: I_{k,m} \to I$). Then the closure $\overline{L} = L \cup P$, where P is a subset of pre-images of the critical point c_0 , and

$$\overline{L} = C(H) \cap I$$
.

Proof: From the functional equation for H, $G(c_j) = c_{pj}$, $j \in \mathbf{Z}$, where c_j , for j < 0, is an H^j -preimage of c_0 . The rest follows.

Denote by $\Pi_{\ell} = (\psi_{k,m}^{(\ell)})_{k,m}$, resp. $\Pi_{\infty} = (\psi_{k,m}^{(\infty)})_{k,m}$, the presentation system of H_{ℓ} , resp. H_{∞} .

The notation B(E) stands for the round disk which is based on an interval $E \subset \mathbf{R}$ as a diameter.

LEMMA 4.2: Let $\Pi = \{\psi_{k,m} : I \to I_{k,m}\}_{k,m}$ be either Π_{ℓ} or Π_{∞} .

(1) There exists a fixed open interval J, which contains I for all ℓ large enough (including $\ell = \infty$), such that each $\psi_{k,m}$ extends to a univalent map $\psi_{k,m} \colon B(J) \to B(J_{k,m})$, where $J_{k,m} = \psi_{k,m}(J)$ are pairwise disjoint intervals properly contained in J.

Therefore, there is $\lambda < 1$ (dependent only on the type \aleph) such that $||D\psi_{k,m}||_{\rho} < \lambda$, for all k,m, and $\ell \leq \infty$ large enough, where $||D\psi_{k,m}||_{\rho}$ denotes the supremum on the interval I of the derivative of $\psi_{k,m}$ in the hyperbolic metric ρ of B(J).

(2) Π (with the metric ρ restricted to the closed subinterval I of J) is an infinite conformal iterated function system, such that:

- (a) $\theta_{\Pi_{\ell}} = 0$ for $\ell < \infty$;
- (b) $\theta_{\Pi_{\infty}} = 2/3, P(\theta_{\Pi_{\infty}}) = \infty;$
- (c) Π_{ℓ} , $\ell \leq \infty$, is regular.
- *Proof:* (1) follows from Theorem 3 (7), and from another representation of the maps of the system: $\psi_{k,m} = H^{-1} \circ \tau^{-k} \circ H^{-(p-m-1)}$ which is a consequence of the equation $H \circ G = \tau^{-1} \circ H$. (2a) is immediate because c_0 is the attracting fixed point of G for finite ℓ .
- (2b)-(2c). Since $G = G_{\infty}$ has a neutral fixed point with two attracting petals, and $\psi'_{k,m}(x) = (G^k)'(H^{-(p-m)}(x))(H^{-(p-m)})'(x)$, we obtain the following asymptotics, as $k \to \infty$, for the presentation system: $|\psi'_{k,m}(x)|/k^{-3/2} \to a_m(x)$ where, for fixed $m = 1, \ldots, p-1$, the function $a_m(x)$ is continuous and positive on I. It follows from here that the critical exponent θ of the system is $\theta = 2/3$. Thus, $p_1(\theta) = \infty$ for all $\ell \leq \infty$. Hence, by Theorem 5, the system $\{\psi_{k,m}\}$ is regular.
- 4.2 HAUSDORFF DIMENSION FOR THE LIMIT MAP. As a corollary, we obtain Theorem 4, (a)-(b):

COROLLARY 4.1: (1)
$$2/3 < HD(C(H_{\infty})) < 1$$
,
(2) $\liminf_{\ell \to \infty} HD(C(H_{\ell})) \ge HD(C(H_{\infty})) > \frac{2}{3}$.

- Proof: Denote $H = H_{\infty}$. Since H is regular and $P(2/3) = \infty$, then HD(C(H)) > 2/3. On the other hand, the Lebesgue measure of $I \setminus \bigcup_{k,m} I_{k,m}$ is positive. Therefore ([10], Theorem 4.5), $HD(C(H)) = HD(C(H) \cap I) = HD(L) < 1$.
- (2) follows from Theorem 5: for every $\delta > 0$, there is a finite subsystem F_{∞} of Π_{∞} with the Hausdorff dimension of its limit set at least $HD(C(H_{\infty})) \delta$. Since the corresponding finite subsystem F_{ℓ} converges to F_{∞} as $\ell \to \infty$, then the Hausdorff dimension of the limit set of F_{ℓ} is at least $HD(C(H_{\infty})) 2\delta$, for all ℓ large enough. The result follows.
- 4.3 Non-symmetry and dominant convergence. It remains to prove Theorem 4 (c).

Denote $\epsilon = 1$ or 2 depending on whether $G'_{\infty}(x_0) = 1$ or -1.

- LEMMA 4.3: 1. The sequence G_{ℓ}^{ϵ} converges to G_{∞}^{ϵ} dominantly if and only if the sequence of non-symmetries $N(H_{\ell})$ is bounded.
- 2. If the combinatorics reverses orientation, then G_{ℓ}^2 converges dominantly to G_{∞}^2 , and the non-symmetries $N(H_{\ell})$ are uniformly bounded.

Proof: Let $H = H_{\ell}$ and $G = G_{\ell}$, $\tau = \tau_{\ell}$, and $I = I_{H}$. We have: $H(G(I(x))) = \tau^{-1}H(I(x)) = \tau^{-1}H(x) = H(G(x))$, i.e., $I \circ G = G \circ I$. The latter equation gives us: $|(G^{\epsilon})''(x_{\ell})| = N(H)\lambda(1-\lambda)$, where $\lambda = \lambda_{\ell} = (G^{\epsilon})'(x_{\ell}) \in (0,1)$. This implies 1.

To prove 2, notice that the combinatorics reverses orientation if and only if $G'_{\infty}(x_0) = -1$. Then we get the dominant convergence, because $|(G^2)''(x_\ell)| = |G''(x_\ell)||\lambda|(1-|\lambda|)$ and $G''(x_\ell) = G''_{\ell}(x_\ell)$ converges to the number $G''_{\infty}(x_0)$, as $\ell \to \infty$. (One can also refer formally to [13], Proposition 7.3.)

4.4 Conformal measures of the presentation systems. Remember that $\Pi_{\ell} = (\psi_{k,m}^{(\ell)}: I^{\ell} \to I_{k,m}^{\ell})_{k,m}$, resp. $\Pi_{\infty} = (\psi_{k,m}^{(\infty)}: I^{\infty} \to I_{k,m}^{\infty})_{k,m}$, the presentation system of H_{ℓ} , resp. H_{∞} . We know that Π_{ℓ}, Π_{∞} are regular. Denote by μ_{ℓ} , resp. μ_{∞} , the unique probability h_{ℓ} -conformal, resp. h_{∞} -conformal, measure of Π_{ℓ} , resp. Π_{∞} , where $h_{\ell} = HD(C(H_{\ell}) \cap I^{\ell}) = HD(C(H_{\ell}))$, $h_{\infty} = HD(C(H_{\infty}) \cap I^{\infty}) = HD(C(H_{\infty}))$. (Notice that the measures have nothing to do with conformal measures of H_{ℓ}, H_{∞} , because the dynamics are completely different.) Since any regular system has a unique conformal measure, to prove that $h_{\ell} \to h_{\infty}$ it is enough to prove that a weak limit ν of a subsequence of μ_{ℓ} is a conformal measure of Π_{∞} . For this to be true, it is enough to check that the support of ν is contained in the limit set L_{∞} of Π_{∞} . Note that by Lemma 4.1(b), the set $\overline{L}_{\infty} \setminus L_{\infty}$ is countable. Therefore, it is enough to prove that ν has no atoms. Thus Theorem 4(c) follows from

LEMMA 4.4: If the non-symmetries $N(H_{\ell})$ are uniformly bounded, then the measure ν has no atoms.

Proof: Let the point $a \in \operatorname{supp}(\nu) = \overline{L}_{\infty}$, where L_{∞} is the limit set of Π_{∞} , be an atom of ν . Then there is $\sigma > 0$ such that for all r > 0 small enough, $\mu_{\ell}(B(a,r)) > \sigma$ along a subsequence of ℓ 's. Since $\psi_{k,m}$ are uniform contractions and the measures are probabilities, one sees that $a \in \overline{L}_{\infty} \setminus L_{\infty}$, i.e., after all, one can assume that $a = x_0$. Now $\mu_{\ell}(B(x_0,r)) \leq \sum_{I_{k,m}^{\ell} \cap B(x_0,r) \neq \emptyset} \int_{I^{\ell}} |D\psi_{k,m}^{(\ell)}|^{h_{\ell}} d\mu_{\ell} \leq C \sum |(G_{\ell}^k)'(y_{\ell,m})|^{h_{\ell}}$, for some fixed C > 0, some points $y_{\ell,m}$ from a fixed compact set K, $x_0 \notin K$ (if ℓ is big enough), and the latter sum runs over such k that $G_{\ell}^k(y_{\ell,m}) \in B(x_0,r')$, where $r' \to 0$ as $r \to 0$. Then a contradiction follows directly from Lemma 4.3 and Theorem 6 (note that t > 2/3 by Corollary 4.1(2)).

5. Appendix: Proof of Theorem 6

1. If $h_n \to h$ is a sequence of injective holomorphic maps in a fixed neighborhood of c, which converges to an injective h uniformly, then the Poincaré series for (f_n, t_n) converge uniformly iff the Poincaré series for $(h_n \circ f_n \circ h_n^{-1}, t_n)$ converge uniformly. In particular, one can assume that $c_n = c = 0$.

2 (see Theorem 7.2 of [13]). Let $h_n(z) = z - B_n z^2$, where

$$B_n = b_n/(\lambda_n(\lambda_n - 1)).$$

Since $|b_n| \leq M|\lambda_n - 1|$ for all n, there is a subsequence of h_n as in Step 1. On the other hand, $h_n \circ f_n \circ h_n^{-1}(z) = \lambda_n z + O(z^3)$. It means one can assume that $f_n(z) = \lambda_n - a_n z^3 + \cdots$ where $a_n \to a > 0$, $0 < \lambda_n < 1$ and $\lambda_n \to 1$.

3. For f_n , make a change $z = \hat{h}_n(w) = d_n w^{-1/2}$, where

$$w \in F = \{w : \text{Re}(w) > R_0\}$$
 and $d_n = (\lambda_n^3/(2a_n))^{1/2}$.

For $g_n = \hat{h}_n^{-1} \circ f_n \circ \hat{h}_n$, we have $g_n(w) = \sigma_n w + 1 + \alpha_n(w)$, where $\sigma_n = \lambda_n^{-2} > 1$ and $\sigma_n \to 1$, α_n converge uniformly in F to the corresponding α for $g = \hat{h}^{-1} \circ f \circ \hat{h}$, $\hat{h} = \lim \hat{h}_n$, and $\alpha_n(w) = O(|w|^{-1/2})$, $\alpha(w) = O(|w|^{-1/2})$.

To deal with g_n^i , we prove the following simple Claim. This is weaker than Theorems 8.1–8.3 of [13], but still enough for our needs.

CLAIM 1: For every $\delta > 0$ there is $R_{\delta} > R_0$ and, for every n, there is a $1 + \delta$ -quasiconformal map ϕ_n of the plane that fixes 0, 1, and ∞ such that $\phi_n^{-1} \circ g_n \circ \phi_n = T_n$, where $T_n(w) = \sigma_n w + 1$, for $\text{Re}(w) > R_{\delta}$. Passing to a subsequence, one can assume that $\phi_n \to \phi$, so that $\phi^{-1} \circ g \circ \phi = T$, T(w) = w + 1.

Proof: Fix $\delta > 0$. Denote $\Pi(R_1, R_2) = \{w : R_1 < \text{Re}(w) < R_2\}$. Then $|\alpha_n(w)|$ and $|\alpha'_n(w)| \le \sup\{|\alpha_n(t)| : |t-w| < 1\}$ are uniformly arbitrarily small as $w \in L := \{\Re(w) = R_\delta\}$ and $R_\delta \to \infty$. Therefore, all $\sigma_n w$ can be joined to $z(w) := \sigma_n w + 1 + \alpha_n(w)$ by disjoint intervals I(w) in the strip between $\sigma_n L$ and z(L). The mapping ϕ_n , which is affine on each interval $[\sigma_n w, \sigma_n w + 1]$ onto I(w) together with the identity on $\Pi(R_\delta, \sigma_n R_\delta)$, is $1 + \delta$ quasi-conformal on $\Pi(R_\delta, \sigma_n R_\delta + 1)$. Then we extend ϕ_n to $\text{Re}(w) > \sigma_n R_\delta + 1$ by the (conformal) dynamics of g_n , T_n , and define it identity on the rest of the plane.

CLAIM 2: For every real p > 1, there is M such that $|(T_n^i)'(w)|/|T_n^i(w)|^p \le Mi^{-p}$ for all i, n, and all w > 1.

Indeed, denote $C(i,n) = \sigma_n^i$. Consider any subsequence $(i_j, n_j), j \to \infty$. If C(i,n) is bounded from above along this subsequence, then applying as in [12],

Section 6, the inequality between arithmetic and geometric means, we can write $T_n^i(w) = \sigma_n^i w + (1 + \sigma_n + \dots + \sigma_n^{i-1}) \geq (i+1) w^{1/(i+1)} \sigma_n^{i/2} \geq C(i,n)^{1/2}i$, so that $|(T_n^i)'(w)|/|T_n^i(w)|^p \leq C(i,n)^{1-p/2}i^{-p} = O(i^{-p})$ along the subsequence. If now $C(i,n) \to \infty$ along (i_j,n_j) (and $\sigma_{n_j} \to 1$), then

$$\frac{|(T_n^i)'(w)|}{|T_n^i(w)|^p} = \frac{|\sigma_n^i|}{|\sigma_n^i w + (\sigma_n^i - 1)/(\sigma_n - 1)|^p}$$

$$\sim C(i,n)|\sigma_n - 1|^p/C(i,n)^p \sim (\log C(i,n))^p/C(i,n)^{p-1}i^{-p} = o(i^{-p}).$$

4. From Steps 1–2, Claim 1, and the Koebe distortion theorem, it follows that it is enough to prove the theorem assuming that the compact K is a point x, which, moreover, lies on an attracting direction of f, and small neighborhood V can be replaced by big indexes. We have: $|(f_n^i)'(x)| = K|(g_n^i)'(w)|/|g_n^i(w)|^{3/2}$, where K>0 and w>R depend only on x>0. Thus we need to show that, if $t_n\to t>2/3$, for a given w>0 close enough to $+\infty$, for any $\epsilon>0$ there exists an index i_0 such that $S(g_n,i_0,t_n):=\sum_{i\geq i_0}|(g_n^i)'(w)/g_n^i(w)^{3/2}|^{t_n}<\epsilon$ for all n large enough. Claim 2 (with p=3/2) implies immediately that this is true for $g_n=T_n$.

To handle $S(g_n, i_0, t_n)$ in general, we compare it with $S(T_n, i_0, t_n)$ and proceed similar to [13], Section 10. Due to the Koebe distortion theorem, one can replace the derivative by the ratio of diameters. By Claim 1, the change of the diameters when passing from g_n to T_n is Hölder with the exponent arbitrarily close to 1. Then we apply Claim 2 with p arbitrarily close to 3/2.

References

- [1] H. Bruin, G. Keller, T. Nowicki and S. Van Strien. Wild Cantor attractors exist, Annals of Mathematics 143 (1996), 97-130.
- [2] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progress in Physics, Birkhäuser, Boston, 1980.
- [3] M. Feigenbaum, Qualitative universality for a class of non-linear transformations, Journal of Statistical Physics 19 (1978), 25-52.
- [4] M. Feigenbaum, The universal metric properties of non-linear transformations, Journal of Statistical Physics 21 (1979), 669-706.
- [5] J. Graczyk and O. S. Kozlovski, Global universality in smooth unimodal maps, Warwick preprint 05/2002, February 2002.
- [6] P. Grassberger, On the Hausdorff dimension of fractal attractors, Journal of Statistical Physics **26** (1981), 173–179.

- [7] F. Ledrappier and M. Misiurewicz, Dimension of invariant measures for maps with exponent zero, Ergodic Theory and Dynamical Systems 5 (1985), 595-610.
- [8] G. Levin and G. Świątek, Dynamics and universality of unimodal mappings with infinite criticality, mathaxxiv 0306033, 2003.
- [9] W. De Melo and S. van Strien, One-dimensional Dynamics, Springer-Verlag, New York, 1993.
- [10] D. Mauldin and M. Urbanski, Dimensions and measures in infinite iterated function systems, Proceedings of the London Mathematical Society 73 (1996), 105–154.
- [11] C. McMullen, Renormalization and 3-Manifolds which Fiber over the Circle, Annals of Mathematical Studies 142, Princeton University Press, 1998.
- [12] C. McMullen, Hausdorff dimension and conformal dynamics I: Kleinian groups and strong limits, Journal of Differential Geometry 51 (1999), 471-515.
- [13] C. McMullen, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, Commentarii Mathematici Helvetici 75 (2000), 535-593.
- [14] D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, in Mathematics into the Twenty-First Century, AMS Centennial Publications, 1991.
- [15] S. Van Strien and T. Nowicki, Polynomial maps with a Julia set of positive Lebesgue measure: Fibonacci maps, manuscript, 1994.
- [16] E. B. Vul, Ya. G. Sinai and K. M. Khanin, Feigenbaum universality and thermodynamical formalism, Russian Mathematical Surveys 39 (1984), 1-40.